

DCCN Docker Swarm Cluster

	Introduction
	Docker in a Nutshell

	Docker swarm cluster

	System design
	System architecture

	Image registry

	Service orchestration

	System operation
	Terminologies

	Cluster initialisation

	Node operation

	Service operation

	Stack operation

	Emergancy shutdown

	Disaster recovery

	System monitoring

	Tutorial: basic
	Preparation

	The Dockerfile

	Building the container image

	Running the container

	Network port mapping

	Data persistency

Introduction to Docker Swarm

Docker in a Nutshell

	what is docker? [https://www.docker.com/what-docker]

	Learning docker [https://docs.docker.com/learn/]

Docker swarm cluster

	docker swarm overview [https://docs.docker.com/engine/swarm/]

	Raft consensus [https://docs.docker.com/engine/swarm/raft/]

	Swarm administration guide [https://docs.docker.com/engine/swarm/admin_guide/]

Docker swarm cluster at DCCN

The first swarm cluster at DCCN was developed in order to deploy and manage service components (e.g. DICOM services, data streamer, data stager) realising the automatic lab-data flow. The inital setup consists of 8 nodes repurposed from the HPC and the EXSi clusters.

System architecture

All docker nodes are bare-matel machines running CentOS operating system. The nodes are provisioned using the DCCN linux-server kickstart. They all NFS-mount the /home and /project directories, and use the active directory service for user authentication and authorisation. Only the TG members are allowed to SSH login to the docker nodes.

All docker nodes also NFS-mount the /mnt/docker directory for sharing container data. The figure below shows the architecture of the DCCN swarm cluster.

[image: _images/dccn_swarm_architecture.png]
Fig. 1 The DCCN swarm cluster - a simplified illustration of the architecture.

Image registry

Within the swarm cluster, a private image registry is provided to as a central repository of all container images. The data store of the registry is located in /mnt/docker/registry which is a shared NFS volume on the central storage.

The registry endpoint is docker-registry.dccn.nl:5000. An overview of repository images can be seen here [http://docker-registry.dccn.nl].

Note

For the sake of simplicity, the internal private registry is using a self-signed X.509 certificate. In order to trust it, one needs to copy the certificate of the docker registry server to the docker host, under the directory, e.g. /etc/docker/certs.d/docker-registry.dccn.nl:5000/ca.crt.

Service orchestration

For deploying multiple service components as a single application stack, the docker compose specification v3 [https://docs.docker.com/compose/compose-file/] is used together with the docker stack management interface (i.e. the docker stack command).

An example docker-compose file for orchestrating three services for the data-stager application is shown below:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

	version: "3"

services:

 db:
 image: docker-registry.dccn.nl:5000/redis
 volumes:
 - /mnt/docker/data/stager/ui/db:/data
 networks:
 default:
 aliases:
 - stagerdb4ui
 deploy:
 placement:
 constraints: [node.labels.function == production]

 service:
 image: docker-registry.dccn.nl:5000/stager:1.7.0
 ports:
 - 3100:3000
 volumes:
 - /mnt/docker/data/stager/config:/opt/stager/config
 - /mnt/docker/data/stager/cron:/cron
 - /mnt/docker/data/stager/ui/log:/opt/stager/log
 - /project:/project
 - /var/lib/sss/pipes:/var/lib/sss/pipes
 - /var/lib/sss/mc:/var/lib/sss/mc:ro
 networks:
 default:
 aliases:
 - stager4ui
 environment:
 - REDIS_HOST=stagerdb4ui
 - REDIS_PORT=6379
 depends_on:
 - db
 deploy:
 placement:
 constraints: [node.labels.function == production]

 ui:
 image: docker-registry.dccn.nl:5000/stager-ui:1.1.0
 ports:
 - 3080:3080
 volumes:
 - /mnt/docker/data/stager/ui/config:/opt/stager-ui/config
 networks:
 default:
 aliases:
 - stager-ui
 depends_on:
 - service
 deploy:
 placement:
 constraints: [node.labels.function == production]

networks:
 default:

Whenever the docker compose specification is not applicable, a script to start a docker service is provided. It is a bash script wrapping around the docker service create command.

All the scripts are located in the /mnt/docker/scripts/microservices directory.

Swarm cluster operation procedures

Terminologies

Cluster is a group of docker-engine-enabled nodes (bare-matel or virtual machines). Each node has either a manager or worker role in the cluster. At least one master node is required for a cluster to operate.

Manager refers to the node maintaining the state of the cluster. There can be one or more managers in a cluster. The more managers in the cluster, the higher level of the cluster fault-tolerance.

Worker refers to the node sharing the workload in the cluster.

(Micro-)service is a logical representation of multiple replicas of the same container. Replicas are used for service load-balancing and/or failover.

Stack is a set of linked services.

Cluster initialisation

Note

In most of cases, there is no need to initialse another cluster.

Before there is anything, a cluster should be initialised. Simply run the command below on a docker node to initialise a new cluster:

$ docker swarm init

Force a new cluster

In case the quorum of the cluster is lost (and you are not able to bring other manager nodes online again), you need to reinitiate a new cluster forcefully. This can be done on one of the remaining manager node using the following command:

$ docker swarm init --force-new-cluster

After this command is issued, a new cluster is created with only one manager (i.e. the one on which you issued the command). All remaining nodes become workers. You will have to add additional manager nodes manually.

Tip

Depending on the number of managers in the cluster, the required quorum (and thus the level of fail tolerance) is different. Check this page [https://docs.docker.com/engine/swarm/admin_guide/#operate-manager-nodes-in-a-swarm] for more information.

Node operation

System provisioning

The operating system and the docker engine on the node is provisioned using the DCCN linux-server kickstart. The following kickstart files are used:

	/mnt/install/kickstart-*/ks-*-dccn-dk.cfg: the main kickstart configuration file

	/mnt/install/kickstart-*/postkit-dccn-dk/script-selection: main script to trigger post-kickstart scripts

	/mnt/install/kickstart-*/setup-docker-*: the docker-specific post-kickstart scripts

Configure devicemapper to direct-lvm mode

By default, the devicemapper storage drive [https://docs.docker.com/engine/userguide/storagedriver/device-mapper-driver/] of docker is running the loop-lvm mode which is known to be suboptimal for performance. In a production environment, the direct-lvm mode is recommended. How to configure the devicemapper to use direct-lvm mode is described here [https://docs.docker.com/engine/userguide/storagedriver/device-mapper-driver/#configure-direct-lvm-mode-for-production].

Before configuring the direct-lvm mode for the devicemapper, make sure the directory /var/lib/docker is removed. Also make sure the physical volume, volume group, logical volumes are removed, e.g.

$ lvremove /dev/docker/thinpool
$ lvremove /dev/docker/thinpoolmeta
$ vgremove docker
$ pvremove /dev/sdb

Hereafter is a script summarizing the all steps. The script is also available at /mnt/install/kickstart-7/docker/docker-thinpool.sh.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

	#!/bin/bash

if [$# -ne 1]; then
 echo "USAGE: $0 <device>"
 exit 1
fi

get raw device path (e.g. /dev/sdb) from the command-line argument
device=$1

check if the device is available
file -s ${device} | grep 'cannot open'
if [$? -eq 0]; then
 echo "device not found: ${device}"
 exit 1
fi

install/update the LVM package
yum install -y lvm2

create a physical volume on device
pvcreate ${device}

create a volume group called 'docker'
vgcreate docker ${device}

create logical volumes within the 'docker' volume group: one for data, one for metadate
assign volume size with respect to the size of the volume group
lvcreate --wipesignatures y -n thinpool docker -l 95%VG
lvcreate --wipesignatures y -n thinpoolmeta docker -l 1%VG
lvconvert -y --zero n -c 512K --thinpool docker/thinpool --poolmetadata docker/thinpoolmeta

update the lvm profile for volume autoextend
cat >/etc/lvm/profile/docker-thinpool.profile <<EOL
activation {
 thin_pool_autoextend_threshold=80
 thin_pool_autoextend_percent=20
}
EOL

apply lvm profile
lvchange --metadataprofile docker-thinpool docker/thinpool

lvs -o+seg_monitor

create daemon.json file to instruct docker using the created logical volumes
cat >/etc/docker/daemon.json <<EOL
{
 "hosts": ["unix:///var/run/docker.sock", "tcp://0.0.0.0:2375"],
 "storage-driver": "devicemapper",
 "storage-opts": [
 "dm.thinpooldev=/dev/mapper/docker-thinpool",
 "dm.use_deferred_removal=true",
 "dm.use_deferred_deletion=true"
]
}
EOL

remove legacy deamon configuration through docker.service.d to avoid confliction with daemon.json
if [-f /etc/systemd/system/docker.service.d/swarm.conf]; then
 mv /etc/systemd/system/docker.service.d/swarm.conf /etc/systemd/system/docker.service.d/swarm.conf.bk
fi

reload daemon configuration
systemctl daemon-reload

Join the cluster

After the docker daemon is started, the node should be joined to the cluster. The command used to join the cluster can be retrieved from one of the manager node, using the command:

$ docker swarm join-token manager

Note

The example command above obtains the command for joining the cluster as a manager node. For joining the cluster as a worker, replace the manager on the command with worker.

After the command is retrieved, it should be run on the node that is about to join to the cluster.

Set Node label

Node label helps group nodes in certain features. Currently, the node in production is labled with function=production using the following command:

$ docker node update --label-add function=production <NodeName>

When deploying a service or stack, the label is used for locate service tasks.

Leave the cluster

Run the following command on the node that is about to leave the cluster.

$ docker swarm leave

If the node is a manager, the option -f (or --force) should also be used in the command.

Note

The node leaves the cluster is NOT removed automatically from the node table. Instead, the node is marked as Down. If you want the node to be removed from the table, you should run the command docker node rm.

Tip

An alternative way to remove a node from the cluster directly is to run the docker node rm command on a manager node.

Promote and demote node

Node in the cluster can be demoted (from manager to worker) or promoted (from worker to manager). This is done by using the command:

$ docker node promote <WorkerNodeName>
$ docker node demote <ManagerNodeName>

Monitor nodes

To list all nodes in the cluster, do

$ docker node ls

To inspect a node, do

$ docker node inspect <NodeName>

To list tasks running on a node, do

$ docker node ps <NodeName>

Service operation

In swarm cluster, a service is created by deploying a container in the cluster. The container can be deployed as a singel instance (i.e. task) or multiple instances to achieve service failover and load-balancing.

Start a service

To start a service in the cluster, one uses the docker service create command. Hereafter is an example for starting a nginx web service in the cluster using the container image docker-registry.dccn.nl:5000/nginx:1.0.0:

	1
2
3
4
5
6
7

	$ docker service create \
--name webapp-proxy \
--replicas 2 \
--publish 8080:80/tcp \
--constaint "node.labels.function == production" \
--mount "type=bind,source=/mnt/docker/webapp-proxy/conf,target=/etc/nginx/conf.d" \
docker-registry.dccn.nl:5000/nginx:1.0.0

Options used above is explained in the following table:

	option

	function

	--name

	set the service name to webapp-proxy

	--replicas

	deploy 2 tasks in the cluster for failover and loadbalance

	--publish

	map internal tcp port 80 to 8080, and expose it to the world

	--constaint

	restrict the tasks to run on nodes labled with function = production

	--mount

	mount host’s /mnt/docker/webapp-proxy/conf to container’s /etc/nginx/conf.d

More options can be found here [https://docs.docker.com/engine/reference/commandline/service_create/].

Remove a service

Simply use the docker service rm <ServiceName> to remove a running service in the cluster. It is not normal to remove a productional service.

Tip

In most of cases, you should consider updating the service rather than removing it.

Update a service

It is very common to update a productional service. Think about the following conditions that you will need to update the service:

	a new node is being added to the cluster, and you want to move an running service on it, or

	a new container image is being provided (e.g. software update or configuration changes) and you want to update the service to this new version, or

	you want to create more tasks of the service in the cluster to distribute the load.

To update a service, one uses the command docker service update. The following example update the webapp-proxy service to use a new version of nginx image docker-registry.dccn.nl:5000/nginx:1.2.0:

$ docker service update \
--image docker-registry.dccn.nl:5000/nginx:1.2.0 \
webapp-proxy

More options can be found here [https://docs.docker.com/engine/reference/commandline/service_update/].

Monitor services

To list all running services:

$ docker service ls

To list tasks of a service:

$ docker service ps <ServieName>

To inspect a service:

$ docker service inspect <ServiceName>

To retrieve logs written to the STDOU/STDERR by the service process, one could do:

$ docker service logs [-f] <ServiceName>

where the option -f is used to follow the output.

Stack operation

A stack is usually defined as a group of related services. The defintion is described using the docker-compose version 3 specification [https://docs.docker.com/compose/compose-file/].

Here is an example of defining the three services of the DCCN data-stager [https://github.com/Donders-Institute/data-stager].

Using the docker stack command you can manage multiple services in one consistent manner.

Deploy (update) a stack

Assuming the docker-compose file is called docker-compose.yml, to launch the services defined in it in the swarm cluster is:

$ docker stack deploy -c docker-compose.yml <StackName>

When there is an update in the stack description file (e.g. docker-compose.yml), one can use the same command to apply changes on the running stack.

Note

Every stack will be created with an overlay network in swarm, and organise services within the network. The name of the network is <StackName>_default.

Remove a stack

Use the following command to remove a stack from the cluster:

$ docker stack rm <StackName>

Monitor stacks

To list all running stacks:

$ docker stack ls

To list all services in a stack:

$ docker stack services <StackName>

To list all tasks of the services in a stack:

$ docker stack ps <StackName>

Emergancy shutdown

Note

The emergency shutdown should take place before the network and the central storage are down.

	login to one manager

	demote other managers

	remove running stacks and services

	shutdown all workers

	shutdown the manager

Reboot from shutdown

Note

By the accidental network outage in August 2017 (Domain Controller upgrade), the cluster nodes were not reacheable and required hard (i.e. push the power button) to reboot. In this case, the emergancy shutdown procedure was not followed. Interestingly, the cluster was recovered automatically after sufficient amount of master nodes became online. All services were also re-deployed immediately without any human intervention.

	boot on the manager node (the last one being shutted down)

	boot on other nodes

	promote nodes until a desired number of managers is reached

	deploy firstly the docker-registry stack

$ cd /mnt/docker/scripts/microservices/registry/
$ sudo ./start.sh

Note

The docker-registry stack should be firstly made available as other services/stacks will need to pull container images from it.

	deploy other stacks and services

Disaster recovery

Hopefully there is no need to go though it!!

For the moment, we are not backing up the state of the swarm cluster [https://docs.docker.com/engine/swarm/admin_guide/#back-up-the-swarm]. Given that the container data has been stored (and backedup) on the central storage, the impact of losing a cluster is not dramatic (as long as the container data is available, it is already possible to restart all services on a fresh new cluster).

Nevertheless, here [https://docs.docker.com/engine/swarm/admin_guide/#recover-from-disaster] is the official instruction of disaster recovery.

Docker swarm health monitoring

Various management and monitoring web-based tools can be found here [http://docker.dccn.nl].

The health of the swarm nodes are monitored by the Xymon monitor [http://xymon.dccn.nl/xymon/Docker/Docker.html].

Tutorial: basic

This tutorial is based on an example of building and running a container of the Apache HTTPd server which serves a simple PHP-based helloworld application. Throught the tutorial you will learn:

	the docker workflow and basic UI commands,

	network port mapping,

	data persistency

Preparation

Files used in this tutorial are available on GitHub. Preparing those files within the ~/tmp using the commands below:

$ mkdir -p ~/tmp
$ cd ~/tmp
$ wget https://github.com/Donders-Institute/docker-swarm-setup/raw/master/doc/tutorial/centos-httpd/basic.tar.gz
$ tar xvzf basic.tar.gz
$ cd basic
$ ls
Dockerfile Dockerfile_php htmldoc run-httpd.sh

The Dockerfile

Before starting a container with Docker, we need a docker container image that is either pulled from a image registry (a.k.a. docker registry), such as the Docker Hub [https://hub.docker.com], or built by ourselves. In this exercise, we are going to build a container image ourselves.

For building a docker image, one starts with writing an instruction file known as the Dockerfile [https://docs.docker.com/engine/reference/builder/].

Dockerfile is a YAML [https://en.wikipedia.org/wiki/YAML] document describing how a docker container should be built. Hereafter is an example of the Dockerfile for an Apache HTTPd image:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	FROM centos:7
MAINTAINER The CentOS Project <cloud-ops@centos.org>
LABEL Vendor="CentOS" \
 License=GPLv2 \
 Version=2.4.6-40

RUN yum -y --setopt=tsflags=nodocs update && \
 yum -y --setopt=tsflags=nodocs install httpd && \
 yum clean all

EXPOSE 80

Simple startup script to avoid some issues observed with container restart
ADD run-httpd.sh /run-httpd.sh
RUN chmod -v +x /run-httpd.sh

CMD ["/run-httpd.sh"]

The Dockerfile above is explained below.

Each line of the Dockerfile is taken as a step of the build. It started with a keyword followed by argument(s).

Line 1: all container images are built from a basis image. This is indicated by the FROM keyword. In this example, the basis image is the official CentOS 7 image from the Docker Hub.

Line 2-3: a container image can be created with metadata. For instance, the MAINTAINER and LABEL attributes are provided in the example.

Line 8-10: given that we want to build a image for running the Apache HTTPd server, we uses the YUM package manager to install the httpd package within the container. It is done by using the RUN keyword followed by the actual YUM command.

Line 12: we know that the HTTPd service will run on port number 80, we expose that port explicitly for the connectivity.

Line 14: comments in Dockerfile are started with the #.

Line 15: the run-httpd.sh [https://raw.githubusercontent.com/Donders-Institute/docker-swarm-setup/master/doc/tutorial/centos-httpd/basic/run-httpd.sh] is a script for bootstraping the HTTPd service. It is the main program to be executed after the container is started. In order to make this script available in the image, we use the ADD keyword here. The example here can be interpreted as copying the file “run-httpd.sh” on the host to file “/run-http.sh” in the container image.

Line 16: here we make the bootstrap script in the container image executable so that it can be run directly. It is done using the RUN keyword again.

Line 18: the keyword CMD specifies the command to be executed when the container is started. Here we simply run the bootstrap script we have just copied into the container.

Building the container image

With the Dockerfile in place, we can proceed for building the container image. Make sure you are in the basic folder, and run the following command:

$ docker build -t httpd:centos .

Here we give the image a name:tag with the -t option. With that, the image can be later referred by httpd:centos.

Keep your eyes on the output of the build process. You will find the steps in the Dockerfile are executed sequencially, and some output (e.g. the output from yum install) looks like as if you are running in a CentOS7 system.

What interesting to notice are lines with hash strings. For example:

---> 5182e96772bf
Step 2/8 : MAINTAINER The CentOS Project <cloud-ops@centos.org>
---> Running in 52daee99ca6c
Removing intermediate container 52daee99ca6c
---> cf9a7fe73efc

Image layers

During the build process, each step in the Dockerfile triggers creation of two image layers. One intermediate layer for executing the step; the other is a persistent layer containing results of the step. Those layers are indicated by the hash strings we see in the output snippet above.

The intermediate layer is forked from the persistent layer of the previous step, except for the first step on which the persistent image is always from an existing image built somewhere else (a reason that we always see keyword FROM as the first step in the Dockerfile). The intermediate layer is removed after the execution of the step.

Each persistent layer only consists of the “delta” to the one from its previous step. As illustrated in Fig. 2, the final image is then constructed as a stack of those persisten layers; and it is locked for read-only.

[image: illustration of the Docker image and container layers.]
Fig. 2 an illustration of the Docker image and container layers. This figure is inspired by the one on the Docker document [https://docs.docker.com/storage/storagedriver/images/container-layers.jpg].

Persistent layers are reused when they are encountered in different/independent build processes. For example, the persistent layer created by the first step (FROM centos:7) is very likely to be reused for building a variety of container images based on CentOS 7. In this case, Docker will reuse the image downloaded before instead of duplicating it for using the host’s storage efficiently.

The image layers of a final docker image can be examinated by the docker history <image name:tag> command. For example,

$ docker history httpd:centos

Running the container

With the image built successfully, we can now start a container with the image using the docker run [options] <image name:tag> command. For example,

$ docker run --rm -d -p 8080:80 --name myhttpd httpd:centos

Let’s connect the browser to the URL http://localhost:8080. You will see a default welcome page of the Apache HTTPd server.

A few options are used here:

Option --rm instructs Docker to remove the container layer (see below) when the container is stopped.

Option -d instructs Docker to run the container in a detached mode.

Option -p instructs Docker to map the host’s network port 8080 to the container’s network port 80 so that this service is accessible from the host’s external network.

Option --name names the container so that the container can be later referred easily.

Container layer

When running the container from a image, Docker creates a new writable layer (a.k.a. container layer) on top of the image layers. Changes made within the container are delta to the image layers and kept in this container layer. In this way, Docker makes the image layers read-only; and thus can be used by multiple independent containers without interference.

Note

In fact, the way Docker organise deltas in the image layers and the container layer is similar to how the Linux life CD manages the filesystems. They are both based on a stackable filesystem with the Copy-on-Write (CoW) strategy.

The concept of the image layers and the container layer is illustrated in Fig. 2.

Exercise: PHP with MySQL support

Can you extend/modify the Dockerfile and build a image called php:centos? In this image, we want to add PHP with MySQL support to the Apache HTTPd server.

The container should be started with

$ docker run --rm -d -p 8080:80 --name myphp php:centos

Hint

In a CentOS system, one can just run yum -y install php php-mysql to add PHP with MySQL support to the Apache HTTPd server.

To verify the PHP support, you can create a file /var/www/html/index.php in the container, and visit the page http://localhost:8080/index.php. Hereafter is an example:

$ docker exec -it myphp bash
$ cat > /var/www/html/index.php <<EOF
<?php phpinfo(); ?>
EOF

Network port mapping

Networkk port mapping is the way of making the container service accessible to the network of the host.

In the Dockerfile example above, we explicitly expose the port 80 as we know that the HTTPd will listen on this TCP port.

However, the container runs in an internal virtual network, meaning that our HTTPd service is not accessible from the network on which the host is running.

To make the service accessible externally, one uses the -p option to map the host’s port to the container’s port. For instance, the option -p 8080:80 implies that if the client connects to the port 8080 of the host, the connection will be redirected to the port 80 of the container.

Exercise: network

How do you make the HTTPd container accessible on port 80?

Data persistency

The default welcome page of the Apache HTTPd is boring. We are going to create our own homepage.

Let’s access to the bash shell of the running httpd container:

$ docker exec -it myhttpd bash
$ hostname

In Apache HTTPd, the way to replace the default homepage is creating our own index.html file within the folder /var/www/html. For example, using the command below to create a HTML form in /var/www/html/index.html:

$ cat > /var/www/html/index.html <<EOF
<html>
<head></head>
<body>
<h2>Welcome to my first HTML page served by Docker</h2>
<form action="hello.php" method="POST">
 Your name: <input type="text" name="name"></br>
 Your email: <input type="text" name="email"></br>
<input value="submit" name="submit" type="submit">
</form>
</body>
</html>
EOF

If you revisit the page http://localhost:8080, you will see the new homepage we just created.

Now imaging that we have to restart the container for a reason. For that, we do:

$ docker stop myhttpd
$ docker run --rm -d -p 8080:80 --name myhttpd httpd:centos

Try connect to the page http://localhost:8080 again with the browser. Do you see the homepage we just added to the container?

Hint

Changes made in the container are stored in the container layer which is only available during the container’s lifetime. When you stop the container, the container layer is removed from the host and thus the data in this layer is NOT persistent.

Volumes

One way to persistent container data is using the so-called volumes. Volumes is managed by Docker and thus it is more portable and manageable.

For the example above, we could create a volume in Docker as

$ docker volume create htmldoc

Hint

One could use docker volume ls and docker volume inspect to list and inspect detail of a Docker volume.

When the volume is available, one could map the volume into the container’s path /var/www/html, using the -v option (i.e. line 3 of the command block below) at the time of starting the container.

	1
2
3
4

	$ docker stop myhttpd
$ docker run -rm -d -p 8080:80 \
-v htmldoc:/var/www/html \
--name myhttpd httpd:centos

Now get into the shell of the container, and create our own index.html again:

$ docker exec -it myhttpd bash
$ cat > /var/www/html/index.html <<EOF
<html>
<head></head>
<body>
<h2>Welcome to my first HTML page served by Docker</h2>
<form action="hello.php" method="POST">
 Your name: <input type="text" name="name"></br>
 Your email: <input type="text" name="email"></br>
<input value="submit" name="submit" type="submit">
</form>
</body>
</html>
EOF
$ exist

Check if the new index.html is in place by reloading the page http://localhost:8080.

Restart the container again:

$ docker stop myhttpd
$ docker run -rm -d -p 8080:80 \
-v htmldoc:/var/www/html \
--name myhttpd httpd:centos

You should see that our own index.html page is still available after restarting the container.

If you want to start from the scratch without any container data, one can simply remove the volume followed by creating a new one.

$ docker volume rm htmldoc
$ docker volume create htmldoc

Bind mounts

Bind mount is another way of keeping container data persistent by binding host’s filesystem structure into the container.

In the files you downloaded to the host you are working on, there is a directory called htmldoc. In this directory, we have prepared our index.html file.

$ ls ~/tmp/basic/htmldoc
hello.php index.html

By binding the directory ~/basic/htmldoc into the container’s /var/www/html directory, the index.html file will appear as /var/www/html/index.html in the container. This is done by the following command at the time of starting the container:

	1
2
3
4

	$ docker stop myhttpd
$ docker run -rm -d -p 8080:80 \
-v ~/tmp/basic/htmldoc:/var/www/html \
--name myhttpd httpd:centos

Hint

While doing the bind mounts in the container, the benefit is that one can change the files on the host and the changes will take effect right in the container. In addition, if new files are created in the container, they will also appear on the host.

Exercise: preserving HTTPd’s log files

We know that the log files of the Apache HTTPd server are located in /var/log/httpd. How do you make those log files persistent?

Index

Service development

This document will walk you though few steps to build and run a WordPress application in the docker swarm cluster. The WordPress application consists of two service components:

	The WordExpress web application hosted in a Apache HTTP server

	MySQL database

For each of the two services, we will build a corresponding Docker container.

Write Dockerfile

Every docker container is built on top a basic container image, the OS container. Almost all Linux distributions have their mainstream systems published as container images on Docker Hub [https://hub.docker.com/explore/].

Build image

Upload image to registry

Deploy service

List of figures

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_images/container-layers-centos7.png
Thin R/W layer -—— container layer

run time
build time

216a2532a134
0fc7006898d2
¢f5165909087 M

L image layers (RO)
2b67b7ab2dee

centos:7

_images/dccn_swarm_architecture.png
Containerised Services

Docker Registry Orthanc PACS
HTTP/TCP Proxy Lab Data Streamer
Portainer Docker Admin. File Stager

Docker Swarm Cluster w/ 5 managers

oo

NFS NFS NFS
| []

/home, /project, /mnt/docker

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 DCCN Docker Swarm Cluster

 		
 Introduction

 		
 Docker in a Nutshell

 		
 Docker swarm cluster

 		
 System design

 		
 System architecture

 		
 Image registry

 		
 Service orchestration

 		
 System operation

 		
 Terminologies

 		
 Cluster initialisation

 		
 Force a new cluster

 		
 Node operation

 		
 System provisioning

 		
 Join the cluster

 		
 Set Node label

 		
 Leave the cluster

 		
 Promote and demote node

 		
 Monitor nodes

 		
 Service operation

 		
 Start a service

 		
 Remove a service

 		
 Update a service

 		
 Monitor services

 		
 Stack operation

 		
 Deploy (update) a stack

 		
 Remove a stack

 		
 Monitor stacks

 		
 Emergancy shutdown

 		
 Reboot from shutdown

 		
 Disaster recovery

 		
 System monitoring

 		
 Tutorial: basic

 		
 Preparation

 		
 The Dockerfile

 		
 Building the container image

 		
 Image layers

 		
 Running the container

 		
 Container layer

 		
 Exercise: PHP with MySQL support

 		
 Network port mapping

 		
 Exercise: network

 		
 Data persistency

 		
 Volumes

 		
 Bind mounts

 		
 Exercise: preserving HTTPd’s log files

_static/up-pressed.png

_static/up.png

